
'%.
Berliner and Riiter also used a resonance method.
Astin developed and used a method employing voltage
resonance that was subsequently adopted by Akerlof.
The values reported by Harrington were obtained by
means of a bridge method at 1 me, and it is uncertain
what method Kistler used at 2.1 me. The measure-
ments of Furth (400 me) and others [19 to 27] were
made at very high frequencies, so the low values re-
ported are undoubtedly attributable to anomalous
dispersion and are not comparable to static values.

Consideration of the data available on static
values suggests that the major descrepancies in the
values reported are in large part due to high con-
ductivity as, in general, it appears that precautions
have not been taken to obtain and maintain low
conductivities for these solutions. To a lesser
extent it is also probable that frequency-dependent
errors are associated with many of these values.
The extent to which these factors may modify the
suitability of a method of measurement is exemplified
by Kniekamp's [9] study and Hartshorn's analysis
[30] of resonance methods.
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Response of Accelerometers to Transient Accelerations
By Samuel Levy and Wilhelmina D. Kroll

Curves and tables are shown for the response of accelerometers to transient exciting
accelerations. Three types of acceleration-time relations are considered. When plotted,
they have square, triangular, and half-sine-wave shapes. The natural periods of the accel-
erometers for which the computations were made were approximately one, one-third, and
one-fifth of the duration of the acceleration pulse. The damping coefficients of the accel-
erometers were 0, 0.4, 0.7, and 1.0 times the critical values. It is indicated that, to obtain
an accuracy of better than 5 percent of the peak acceleration in measuring acceleration pulses
having the general characteristics of the triangular or sinusoidal pulses, an accelerometer
must have a natural period of about one-third the duration of the acceleration pulse, and a
damping constant of about 0.4 to 0.7 of the critical value.

I. Introduction
Accelerometers are widely used to measure os-

cillatory and transient vibrations.
The fidelity with which these instruments respond

in the case of oscillatory stimuli has been thoroughly
studied [1, pp. 61 to 70]. It is found that, when the
damping is between 0.6 and 0.7 of the critical value
and the natural period of the accelerometer is less
than about half of the period of the applied accelera-
tion, the accuracy is satisfactory.

In the case of excitation of the accelerometer by a
transient vibration, only scattered information is
available regarding the reliability of the response
obtained. Weiss [2] gives the response to a tri-

angular pulse of acceleration for an accelerometer
whose natural period is 0.3 the duration of the pulse
and whose damping is 0, 0.3, and 0.7 of the critical
value. He also gives the response to a suddenly
applied constant acceleration for accelerometers
with a damping ratio of 0, 0.3, 0.7, and 1.0 times
the critical value. Welch [3] has determined, on the
Westinghouse transient analyzer, the response to
several kinds of impulses of a 50 c/s single-degree-of-
freedom shock measuring instrument having various
amounts of damping. On the basis of these scattered
data, and information for undamped accelerometers
derived by Frankland [4], Biot and Bisplinghoff [5],
and others, it has been common practice to assume
that an accelerometer will be acceptable in a given
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application if its damping is 0.6 to 0.7 of the critical
value and if its natural period is less than about half
of the duration of the acceleration pulse.

The curves presented in this report were computed
to obtain more systematic information regarding the
accuracy of damped accelerometers in measuring
transient phenomena.

II. Theory

The usual accelerometer is a single-degree-of-free-
dom mechanical system. Such a system is shown in
figure 1. Means are provided to indicate the relative
motion x of the internal mass with respect to the
frame. This relative motion is taken as a measure
of the acceleration, d2y/dt2, of the frame.

The equation of motion for the mass m, figure 1,
is

With

eq 1 becomes

d*x
dt2

dx
~di

CL X i C CLX , rC C
. I I sy ^__ _

dt2 m dt m <

(2)

(3)

(4)

We wish to know how faithfully the response x of
the accelerometer reproduces the time history of the
applied acceleration d2y/dt2 for pulses of acceleration
of finite duration and arbitrary shape. To give the
analysis a wider range of usefulness, eq 4 is written
in dimensionless form by making the following sub-
stitutions:

T=t/T

D=c/2-yJmk—c/cc

(5)

where
cc = 2^mk, critical value of damping co-

efficient,

T= duration of acceleration pulse to be
measured,

= "undamped" period of accelerometer,

( I n ) =peak value of acceleration.
\(lt /max

Substituting eq 5 into eq 4 gives

G4)1 £+¥£+«-•• (6)

For a relatively high frequency accelerometer, R
is a small number. Under these circumstances, the
first two terms in eq 6 become negligible, and the
dimensionless response £ is equal to the dimension-
less acceleration a. As R becomes larger, the first
and second terms start to have an effect. The
primary effect of the second term is to introduce a
time lag between the response £ and the acceleration
a. The primary effect of the first term is to tend
to make the response £ oscillate in value above
and below the value of the acceleration a.

III. Results

Equation 6, giving the relation between the di-
mensionless responses £ and the dimensionless ac-
celeration a, was integrated numerically for three
values of the natural period ratio having approxi-
mately the values, J R = 1 , 1/3, 1/5; for four values
of the damping ratio, Z?=0, 0.4, 0.7, 1.0; and for
the three time-histories of acceleration pulse shown
in figure 2. Numerical integration, instead of
direct integration, was used to give results that
could be plotted directly. Small variations from the
nominal values of R were used for convenience in
computing. These values of R are given in table 1.
A spot check of the results was made using the
analytical solution of eq 6.

The numerical integration was carried out using a
time increment of 1/(20TT) times the natural period
of the accelerometer. Eight decimal figures were
used in the computation.

The results are plotted in figures 3 to 11. Figures
3, 4, and 5 give the response to a sinusoidal pulse of
acceleration. Figure 3 gives the response when the
natural period is about equal to the duration of the
acceleration pulse. Figures 4 and 5 give similar
results with the natural period about one-third and
one-fifth, respectively, of the duration of the accelera-
tion pulse. In each figure, the dimensionless applied
acceleration, a, is shown by a dotted line; the re-
sponse, £, with the damping ratio D=0 by curve 1;
with D=0A by curve 2; with D=0.7 by curve 3;
and with D=1.0 by curve 4.

Figures 6, 7, and 8 show the response to a tri-
angular pulse of acceleration, and figures 9, 10, and
11 show the response to a rectangular pulse. In each
figure, the set of curves brings out the effect of vary-
ing only the damping ratio D.

IV. Discussion

It is evident from an inspection of the figures that
for none of the accelerometers considered does the
time history of the dimensionless response £ coincide
with the time history of the dimensionless accelera-
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TABLE 1.—Error for accelerometer s and acceleration pulses

(1)

R

1.014
1.014
1.014
1.014
0.338
.338
.338
.338
.203
.203
.203
.203

(2)

D

0
0.4

.7
1.0

0
0.4

. 7
1.0

0
0.4

.7
1.0

(3) (4) (5)

Error

£max — dmax |£-a|max After shift
|£-aUa*

HALF-SINE-WAVE PULSE

0.74
.15

- . 0 5
- . 1 8

.17

.02

.00
- . 0 3

.10

.07

.00
- . 0 1

1.36
0.62

.67

.65

.35

.20

.24

.32

.20

.12

.15

.20

1.36
0.24

.18

.24

.35

.06

.06

.10

.20

.05

.03

.06

(6)

AT

0.17
.22
.25
.29
.07
.05
.07
.11
.01
.02
.04
.06

:onsidered

(7) (8)

Plotted

Fig-
ure

3
3
3
3
4
4
4
4
5
5
5
5

Curve

1
2
3
4
1
2
3
4
1
2
3
4

TRIANGULAR PULSE

1.014
1.014
1.014
1.014
0.338
.338
.338
.338
.203
.203
.203
.203

0
0.4

.7
1.0

0
0.4

.7
1.0

0
0.4

.7
1.0

0.51
.00

- . 20
- . 32

.17

.00
- . 0 6
- . 1 1

.10

.00
- . 0 4
- . 0 7

1.29
0.56

.51

.57

.43

.18

.17

.22

.25

.11

.10

.13

1.29
0.21

.20

.32

.43

.06

.06

.12

.25

.03

.04

.07

0.15
.21
.22
.25
.04
.07
.08
.08
.01
.04
.05
.07

6
6
6
6
7
7
7
7
8
8
8
8

1
2
3
4
1
2
3
4
1
2
3
4

SQUARE PULSE

1.014
1.014
1.014
1.014
0.334
.334
.334
.334
.203
.203
.203
.203

0
0.4

.7
1.0

0
0.4

.7
1.0

0
0.4

.7
1.0

1.00
0.25

.05
- . 0 1
1.00
0.25

.05

.00
1.00
0.25

.05

.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
0.49

.53

.50
1.00
0.50

.50

.50
1.00
0.50

.50

.50

0.04
.19
.22
.28
.01
.06
.08
.10
.02
.03
.04
.06

9
9
9
9

10
10
10
10
11
11
11
11

1
2
3
4
1
2
3
4
1
2
3
4

tion a. In many cases, however, the coincidence can
be markedly improved by considering the response
curves to be shifted a small distance to the left.
They can also be improved, in those cases where
oscillatory response is present, by fairing a line
through the oscillatory response. Both of these
methods of record improvement are commonly em-
ployed.

The errors of the various accelerometers for the
acceleration pulses considered are given in table 1.
In columns 1 and 2, respectively, are given the
accelerometer characteristics: R, ratio of natural
period to pulse duration; and D, ratio of damping
constant to critical value.

In column 3, table 1, is given the difference be-
tween the maximum value of dimensionless response,
£, and the maximum value of the dimensionless ap-
plied acceleration, a. The error varies from 0 to 100
percent.

In column 4, table 1, is given the largest absolute
value of the difference £—a where £ and a are evalu-
ated at the same dimensionless time. The error
varies from a minimum of 10 percent to a maximum
of 136 percent.

In column 5, table 1, is given the largest absolute
value of the difference \—a after shifting the £ curve
to the left by the amount AT given in column 6.
The error in this case is typical of the usual way of
interpreting accelerometer records. This error varies
from a minimum of 3 percent to a maximum of 136
percent. If only accelerometers with damping are
considered (D^>0), the largest error is 32 percent
when the accelerometer is subjected to accelerat on
pulses of triangular or sinusoidal time his tories.

On the basis of the few cases investigated, an
optimum value of damping is indicated to be between
0.4 and 0.7 of the critical value. It is also indicated
that, to obtain an accuracy of better than 5 percent
of the peak acceleration in measuring acceleration
pulses having the general characteristics of the tri-
angular or sinusoidal pulses, an accelerometer must
have a natural period of less than about one-third
the duration of the acceleration pulse.

Acknowledgment is due to the Bureau of Aero-
nautics, Navy Department, whose research pro-
jects on vibration pickups have provided the impetus
for the work presented in this paper. The authors
also extend thanks to L. W. Roberson and I. Smith
for assistance in computing the many response curves
and preparing the figures and table.

-Frame
FIGUKE 1. Single-degree-oj'-freedom system representing

accelerometer.
Displacement of frame is y, displacement of internal mass is z, relative displace-

ment of internal mass with respect to frame is x=z—y.
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FIGUEE 2. Pulses of acceleration for which integration was
carried out: (a) half-sine-wave pulse, (b) triangular pulse,
(c) square pulse.

Time ratio^x
FIGURE 3. Response to a half-sine-wave pulse of acceleration,

dashed curve, of an accelerometer whose natural period is
about equal to the duration of the pulse, R = 1.014-

Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the critical, D=0.4; curve (3), damping coefficient 0.7 of the critical, D=0.7;
curve (4), damping coefficient equal to the critical, D=1.0.
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Time ratio, T
FIGURE 4. Response to a half-sine-wave pulse of acceleration,

dashed curve, of an accelerometer whose natural period is
about equal to one-third of the duration of the pulse, R — 0.338.

Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the ciitical, Z)=0.4; curve (3), damping coefficient 0.7 of the critical, D=0.7;
curve (4), damping coefficient equal to the critical, D=l.O.

.5 1.0

Time ratio, r
1.5

FIGURE 6. Response to a triangular pulse of acceleration,
dashed curve, of an accelerometer whose natural period is
about equal to the duration of the pulse, R = 1.014-

Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the critical, B=0A; curve (3), damping coefficient 0.7 of the critical, Z>=0.7;
curve (4), damping coefficient equal to the critical, 2?=1.0.

ratio, r
FIGURE 5. Response to a half-sine-wave pulse of acceleration,

dashed curve, of an accelerometer whose natural period is
about equal to one-fifth of the duration of the pulse, R = 0.203,

Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the critical, D=0A; curve (3), damping coefficient 0.7 of the critical, D=0.7;
curve (4), damping coefficient equal to the critical, 2>=1.0.
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Time ratio, r
FIGURE 7. Response to a triangular pulse of acceleration,

dashed curve, of an accelerometer whose natural period is about
equal to one-third of the duration of the pulse, R = 0.838.

Curve (1), damping coefficient zero, p=0; curve (2), damping coefficient 0.4
of the critical, Z>=0.4; curve (3), damping coefficient 0.7 of the critical, D=0.7;
curve (4), damping coefficient equal to the critical, D=1.0.

.5 1.0

Time ratio, r
FIGURE 9. Response to a square pulse of acceleration, dashed

curve, of an accelerometer whose natural period is about equal
to the duration of the pulse, R = 1.014.

Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the critical, D=0.4; curve (3), damping coefficient 0.7 of the critical, Z>=0.7;
curve (4), damping coefficient equal to the critical, D=1.0.

Time ratio, r
FIGURE 8. Response to a triangular pulse of acceleration,

dash curve, of an accelerometer whose natural period is about
equal to one-fifth of the duration of the pulse, 11=0.208.

f Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the critical, J)=0.4; curve (3), damping coefficient 0.7 of the critical, D=0.7;
curve (4), damping coefficient equal to the critical, D=1.0.
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Time ratio, r
FIGURE 10. Response to a square pulse of acceleration, dashed

curve, of an accelerometer whose natural period is about [equal
to one-third of the duration of the pulse, R = 0.334.

Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
of the critical, D=0.4; curve (3), damping coefficient 0.7 of the critical, D=0.7;
curve (4), damping coefficient equal to the critical, 7)= 1.0.
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Time ratio, T
FIGURE 11. Response to a square pulse of acceleration, dashed

curve, of an accelerometer whose natural period is about equal
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Curve (1), damping coefficient zero, D=0; curve (2), damping coefficient 0.4
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curve (4), damping coefficient equal to the critical, D=1.0.
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